Tutorial ⁶

Q.1 [Def. f to orientation L physical meaning of the Green's thm)
\nlet U
$$
\subseteq
$$
 R² be a non-empty open set.
\nlet $\triangle 2 \subseteq U$ be a compact domain with connected C^4 boundary $\triangle 22$.
\nlet $\triangle 10,13 \rightarrow \triangle 2$ be a parametrization of $\triangle 12$ such that
\n $|\alpha'(t)| = 1$ $\&$ $\alpha''(t) + 0$ $V + \in (0,1)$.
\n(a) Show that $\alpha'(t) \perp \alpha''(t)$ and $\alpha''(t) + 0$. $V \in (0,1)$.
\n(This shows that $\{\frac{\alpha''(t)}{|\alpha''(t)|}, \alpha'(t)\}$ form an orthonormal
\nbors (onB) of IR².)
\nlet α define a positive birification of $\triangle 2$, i. C: the oriented
\n0 NB $\{\frac{\alpha''(t)}{|\alpha''(t)|}, \alpha'(t)\}$ is positive surented as a basis in IR³,
\ni.e. $d \in \{\frac{|1|}{|\alpha''(t)|}, \alpha'(t)\}$ ≥ 0 , $V \ne (0,1)$
\ni.e. $d \in \{\frac{|1|}{|\alpha''(t)|}, \alpha'(t)\}$ ≥ 0 , $V \ne (0,1)$
\nlet $n = \frac{\alpha''(t)}{|\alpha''(t)|}$. (The outward pointing normal of $\triangle \Omega$)
\nlet H = (P, Q): $U \rightarrow IR^2$ be α C^4 vector field.
\nDefine the divergence of F as $div(F) = \frac{\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}}{\frac{\partial Q}{\partial y}}$
\n(b) Show that $\int_{\triangle \Omega} F \cdot n := \int_{0}^{1} F(\alpha(t)) \cdot n(t) dt = \int_{\triangle 2} div(F) dA$

Solution:
\n(a) Since
$$
|\alpha'(t)| = 4
$$
, $\alpha'(t) \cdot \alpha'(t) = 4$.
\nDifferentiate birth sides $w \cdot r \cdot t = t$:
\n $\alpha''(t) \cdot \alpha'(t) + \alpha'(t) \cdot \alpha''(t) = 0$
\n $\therefore \alpha''(t) \cdot \alpha'(t) = 0$
\n $\therefore \alpha'(t) \perp \alpha''(t) = 0$
\n(b) let $\alpha(t) = (\alpha'(t) \cdot y(t))$.
\n $\alpha'(t) = (\alpha'(t) \cdot y(t))$.
\nSince $\{m, \alpha'(t)\}$ is positively oriented ONB, n is found by
\nrotuting $\alpha'(t)$ checkwise by q_0^* , i.e. $n = (y'(t) \cdot \neg x'(t))$.
\n $\therefore \int_{\partial \Omega} F \cdot n = \int_{0}^{4} (P y'(t) - \theta x'(t)) dt$
\n $= \int_{\partial \Omega} - \theta dx + P dy$
\n $= \int_{\Delta} \frac{(\partial P}{\partial x} + \frac{\partial \theta}{\partial y}) dA$ [Green's thm)
\n $= \int_{\Delta} dw(F) dA$.

Remark :

The quantity $\int_{\partial\Omega} f \cdot n$ is called the flux of the vector field. If we imagine $F(x,y)$ as the direction of flow of a fluid at a point $(x, y) \in U$, then $\int_{\partial \Omega} F \cdot n$ measures the amount of fluid which escapes the region Ω through $\partial \Omega$ (Note that only the component of $FL3\Omega$ would contribute to this, so we take F. n) Gireen's thm tells us that this quantity is equivalent to \int_{Ω} div(F)dA, where div(F) (xiy) measures the amount of that escapes the point IX. y) . Therefore, the Gireen's thm can be thought as the conservation of particles: In a "closed system", the particles are nof created nor destroyed .

Q.2 (Canchy - Goursat thm)
\nLet f: C → C be a complex-valued function.
\nWe identify C with IR² through x+iy
$$
\mapsto
$$
 (x,y), so we can
\nwrite f(e) = P(x,y) + i Q(x,y) , where z = x+iy.
\nlet $\Omega \subseteq C$ be a compact domain with C¹ boundary $\partial \Omega$.
\nDefine the complex integral of f as
\n
$$
\int_{\partial \Omega} f(z) dz = \int_{\partial \Omega} Pdx - \partial dy + i \int \partial dx + Pdy
$$
\nSuppose P, R satisfy the (anthy - Riemann equation:
\n
$$
\int_{\partial \Omega} Px = \partial y
$$
\n
$$
\int_{\partial \Omega} Px = \partial x
$$
\n
$$
\int_{\partial \Omega} Px = \int_{\partial \Omega} P(x) \cdot \partial x
$$
\n
$$
\int_{\partial \Omega} f(z) dz
$$
\n
$$
Shuw that \int_{\partial \Omega} f(x) dz = 0.
$$
\n
$$
= \int_{\partial \Omega} (p+i\omega) dx + idy
$$
\n
$$
+ i \int_{\partial \Omega} dx + Pdy
$$

Solution:
\n
$$
\int_{\partial\Omega} f(z) dz = \int_{\partial\Omega} Pdx - \partial dy + i \int \partial dx + Pdy
$$
\n
$$
= \int_{\Omega} (-\partial x - P_y) dA + i \int_{\Omega} (P_x - \partial y) dA
$$
\n
$$
= 0 \quad by \quad the Cauchy-Piemann equation.
$$

Q.3
\nLet
$$
F: |R^2 \rightarrow |P^2
$$
 be a vector field defined by
\n $F(x,y) = (x^2y+y^3-y+fix), 3x + 2y^2x +g(y))$
\nwhere $f \cdot g : R \rightarrow R$ are differentiable.
\nLet $g \cdot f : S \subseteq R^2 : \Omega$ is compact k 3 Ω is piecewise C¹
\nFind $\Omega \in \mathcal{A}$ which maximizes
\n $\int_{\partial \Omega} F \cdot d\vec{\tau}$
\nwhere $\partial \Omega$ is positively oriented.

Solution : By the Gireen's thm, $\int_{\partial\Omega} f \cdot d\vec{\tau} = \int_{\Omega}$ $\frac{\partial x}{\partial L^2} - \frac{\partial y}{\partial L^1} dA$ $=$ $\frac{3+3y^{2}}{2}$ 3+3y² - (x²+2y²-1) dA
52 = \int_{∞}^{2} $(4 - \gamma^2 -)$ y \mathcal{L}) dA . < ' . The integral is maximized if $\mathcal{D} = \{(\mathbf{x} \cdot \mathbf{y}): \mathbf{x}$ 2 + y $2 \leq 4$